

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE CHEMISTRY

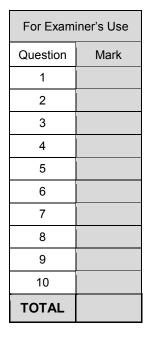
Foundation Tier Paper 2

Wednesday 12 June 2019

Morni

Materials

For this paper you must have:

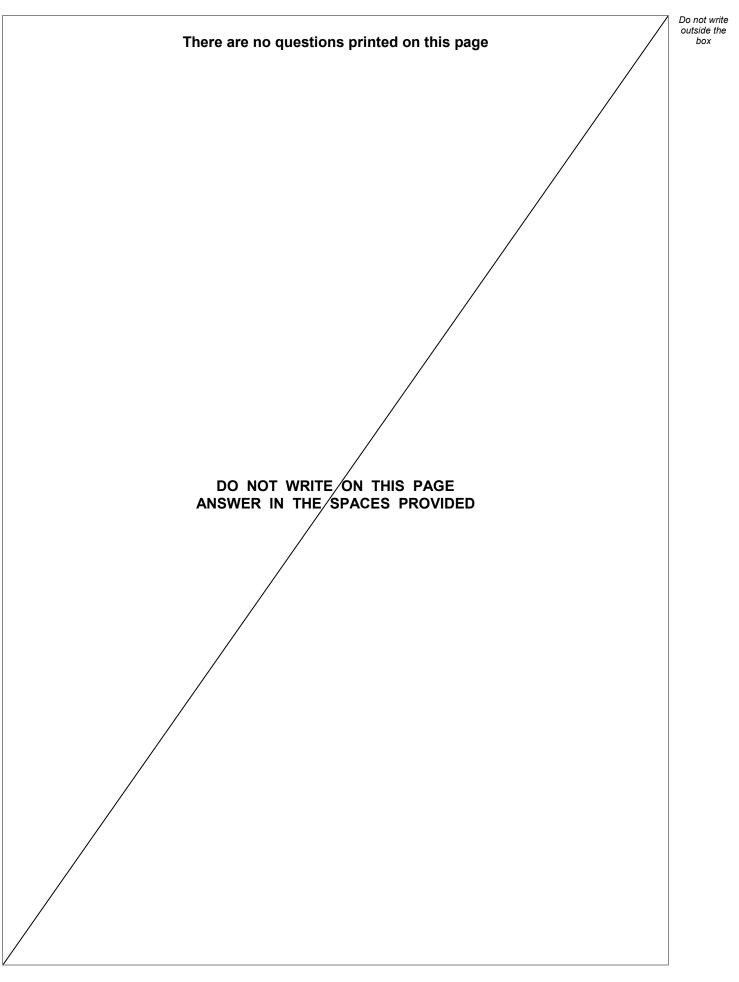

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.



Morning Tim

Time allowed: 1 hour 45 minutes

	Answer all questions in the spaces prov	ided.
0 1	This question is about drinking water.	
	There are two main steps in producing drinking water	from fresh water.
0 1.1	Draw one line from each step to the reason for the ste	ep. [2 marks]
	Step	Reason for step
		Desalination
	Filtration	Improve taste
		Increase pH
	Sterilisation	Kill bacteria
		Remove solids
0 1.2	Which two substances are used to sterilise fresh wate	er? [2 marks]
	Tick (✓) two boxes.	
	Ammonia	
	Chlorine	
	Hydrogen	
	Nitrogen	
	Ozone	

Turn over ►

	A large amount of aluminium sulfate was accidentally added to the drinking water supply at a water treatment works.	Do not write outside the box
01.3	Scientists tested a sample of the drinking water to show that it contained dissolved solids.	
	Which two methods show the presence of dissolved solids in the sample of drinking water?	
	Tick (✓) two boxes.	5]
	Add damp litmus paper to the sample.	
	Evaporate all water from the sample.	
	Measure the sample's boiling point.	
	Test the sample with a glowing splint.	

			-
0 1.4	Scientists tested two water samples from the dr	inking water supply.	Do no outsic bo
	The scientists tested one sample for aluminium ions.	ions and the other sample for sulfate	
	Draw one line from each ion to the compound r	needed to identify the ion. [2 marks]	
	lon	Compound needed to identify ion	
		Barium chloride	
	Aluminium ion	Copper sulfate	
		Silver nitrate	
	Sulfate ion	Sodium hydroxide	
		Sulfuric acid	
0 1.5	How could pure water be produced from drinkin solids?	g water that contained dissolved [1 mark]	
	Tick (✓) one box.		
	Chromatography		
	Cracking		
	Distillation		
	Sedimentation		9

Turn over ►

0 2	Some central heating boilers use methane as a fuel.	Do n outs
	Carbon monoxide detectors are placed near central heating boilers.	
02.1	Which three properties of carbon monoxide make it necessary to use carbon monoxide detectors?	
	Choose answers from the box. [3 marks]	
	acidic alkaline colourless corrosive	
	insoluble odourless toxic	
	1	
	2	
	3	
02.2	Complete the sentence.	
	[1 mark] Methane produces carbon monoxide when burning in a limited supply of	
	·	
0 2 . 3	8 g of methane has a volume of 12 dm ³ at room temperature and pressure.	
	Calculate the mass of 36 dm ³ of methane. [2 marks]	
		-
		-
		-
	Mass = g	

0 2. **4** Most methane is obtained from natural gas, which is a fossil fuel.

Methane can also be produced renewably.

Which two are renewable sources of methane?

Tick (✓) **two** boxes.

Animal waste

Food in landfill

Nitrogen in the air

Non-biodegradable plastics

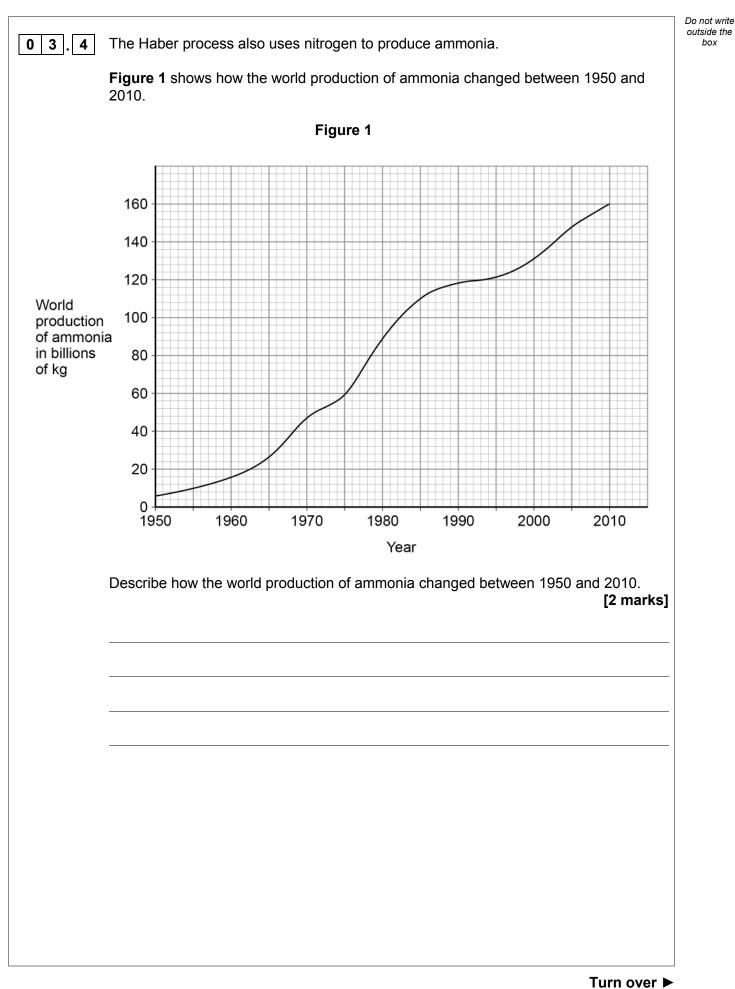
Scrap iron

Turn over for the next question

IB/G/Jun19/8462/2F

Do not write outside the

box


[2 marks]

03	Hydrogen is a raw material in the Haber process. Hydrogen is produced from methane. The word equation for the reaction is: methane + steam ⇒ carbon monoxide + hydrogen
0 3.1	The word equation for the reaction is:
0 3.1	
0 3.1	methane + steam \rightleftharpoons carbon monoxide + hydrogen
0 3.1	
	How can you tell that the reaction is reversible? [1 mark]
0 3.2	The forward reaction is endothermic.
	Name the type of energy change in the reverse reaction. [1 mark]
0 3.3	A nickel catalyst is used in this reaction.
	Why is a catalyst used in this reaction? [2 marks] Tick (✓) two boxes.
	To increase the temperature
	To produce less carbon monoxide
	To reduce costs
	To use less energy
	To use less methane

0 9

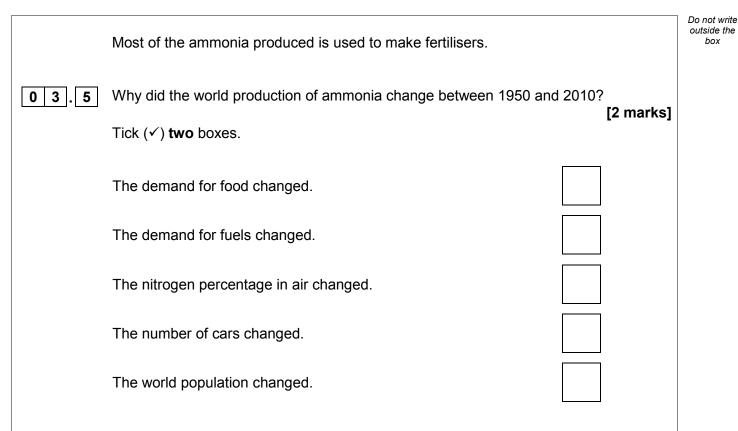


Table 1 shows data about four fertilisers, A, B, C and D.

Table 1

Fertiliser	Percentage by mass of nitrogen (%)	Percentage by mass of phosphorus (%)	Percentage by mass of potassium (%)
А	35.0	0.0	0.0
В	21.2	0.0	0.0
С	21.2	23.5	0.0
D	0.0	0.0	52.3

box

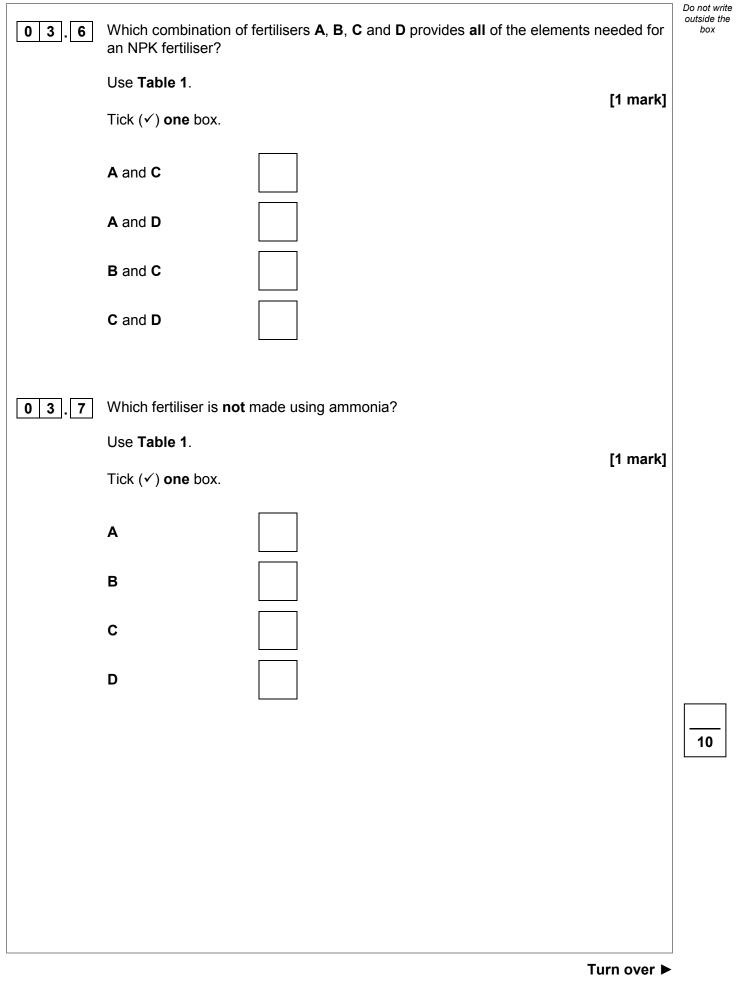
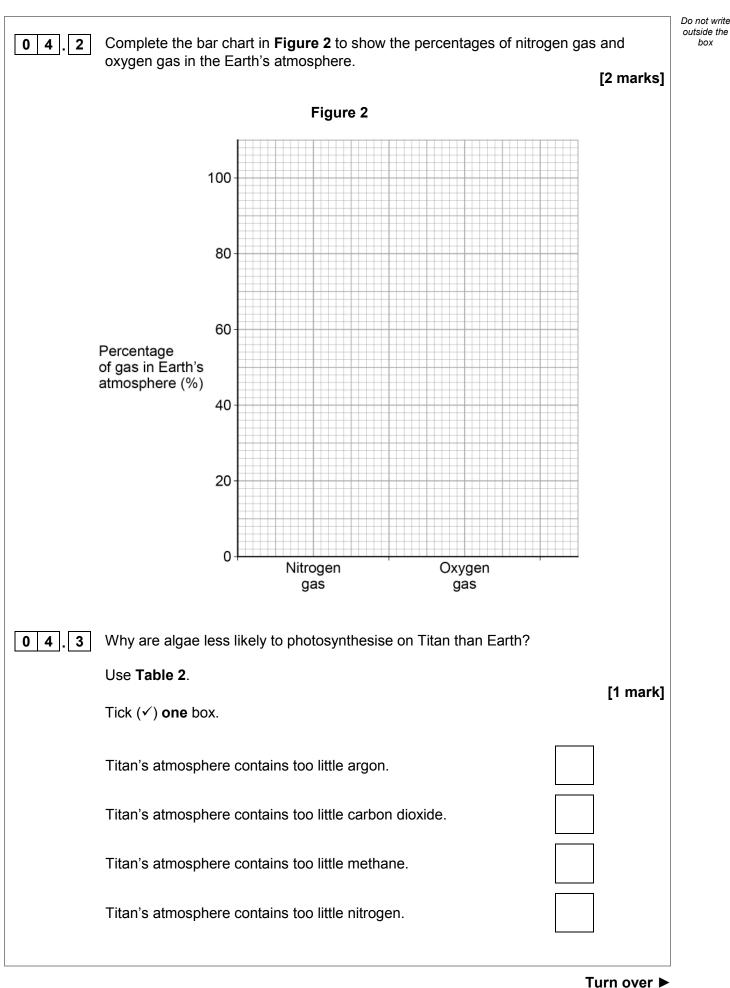


Table 2 shows the percentages of some gases in the atmosphere of Titan and in the

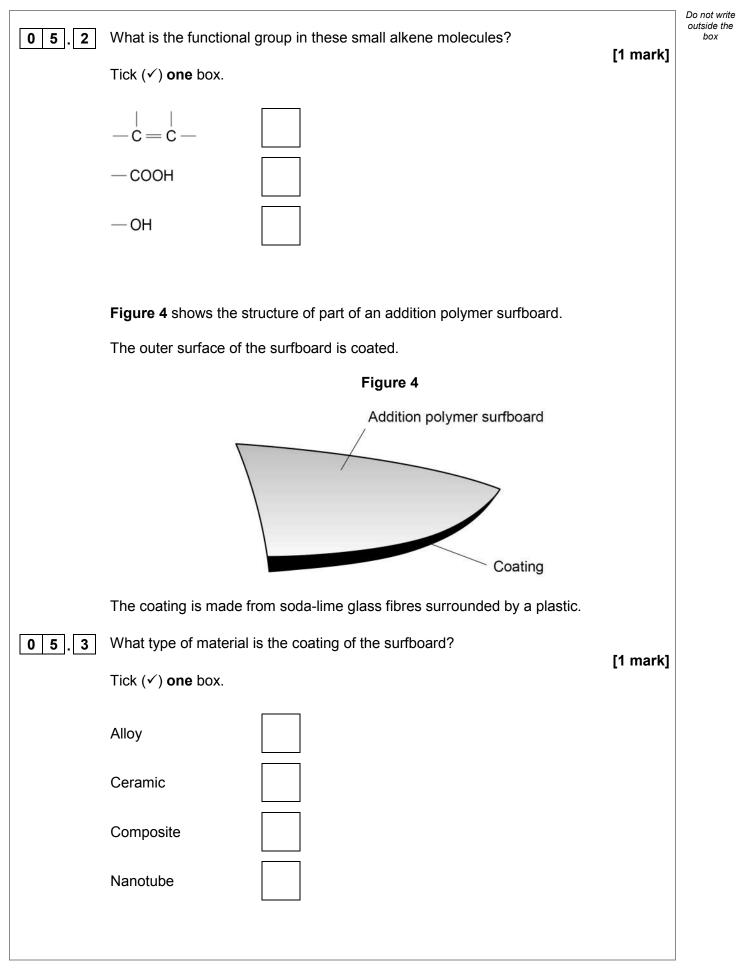

12

Titan is a moon of the planet Saturn.

GasTitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	TitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9	GasTitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	GasTitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	GasTitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04		Table 2	
TitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	TitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	TitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	TitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	TitanEarthNitrogen9878OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	Gas	Percentage of gas in	atmosphere (%
OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	Oxygen Zero 21 Methane 1.4 0.000 Argon 0.14 0.9 Carbon dioxide 0.0001 0.04	OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	OxygenZero21Methane1.40.000Argon0.140.9Carbon dioxide0.00010.04	Gas	Titan	Earth
Methane 1.4 0.000 Argon 0.14 0.9 Carbon dioxide 0.0001 0.04	Methane 1.4 0.000 Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Methane 1.4 0.000 Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Methane 1.4 0.000 Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Methane 1.4 0.000 Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Nitrogen	98	78
Argon0.140.9Carbon dioxide0.00010.04	Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Argon 0.14 0.9 Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Oxygen	Zero	21
Carbon dioxide 0.0001 0.04	Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Carbon dioxide 0.0001 0.04 ch two gases are present in smaller percentages on the Earth than	Methane	1.4	0.000
	n two gases are present in smaller percentages on the Earth than	n two gases are present in smaller percentages on the Earth than	n two gases are present in smaller percentages on the Earth than	n two gases are present in smaller percentages on the Earth than	Argon	0.14	0.9
h two gases are present in smaller percentages on the Earth than					Carbon dioxide	0.0001	0.04
and							
						and	
						and	

0 4

[1 mark]


				Do not v
04.4	Titan is warmer than the othe	er moons of Saturn becaus	e of the greenhouse effect.	outside box
	How do greenhouse gases t	rap energy from the sun?	[1 mar	k1
	Tick (✓) one box.		[11141	
	All wavelengths of radiation	are reflected back to the su		
	Long wavelength radiation is	s reflected back to the surfa	ce of Titan.	
	Short wavelength radiation is	s reflected back to the surfa		
	Short wavelength radiation is			
		-	mall amounts of propene gas	6.
	Methane is an alkane and pr			
0 4 . 5	Bromine water is an orange	solution used to identify alk	enes.	
	Draw one line from each gas	s to its effect on bromine wa	ater. [2 marks	s]
	Gas		Effect on bromine water	
			Forms a blue solution	
		1		
	Methane		Forms a colourless solution	
			Forms a green solution	
	Propene		Forms a white precipitate	
			No effect	

	Turn over ►	
	Turn over for the next question	
	U	9
	Mass =g	
	Calculate the mass of propene that reacts with 21 g water. [2 marks]	
	7:3	
	propene : water	
	The ratio of the masses of propene and water that react is:	
04.6	Propene reacts with water (steam) to make propanol.	Do not write outside the box

	Choose answers from the bo		[2 marks
	air	ammonia	copper
	limesto	ne	sand
	The materials used to make	the soda-lime glass fibres ar	re sodium carbonate,
		and	
5.5	Suggest two reasons why su	irfboards are coated.	[2 marks
	1		
	2		
	2		
	2 Some surfboards are made f		
		rom wood.	
	Some surfboards are made f Table 3 contains information	rom wood.	
	Some surfboards are made f Table 3 contains information	rom wood. about the materials in an ac	
	Some surfboards are made f Table 3 contains information	rom wood. about the materials in an ac Table 3 Addition polymer	ddition polymer surfboard and
	Some surfboards are made f Table 3 contains information a wooden surfboard.	rom wood. about the materials in an ac Table 3 Addition polymer surfboard	ddition polymer surfboard and
	Some surfboards are made for Table 3 contains information a wooden surfboard.	rom wood. about the materials in an ac Table 3 Addition polymer surfboard 14	ddition polymer surfboard and Wooden surfboard 38

Suggest two advantages and two disadvantages of using addition polymers rather than wood to make surfboards.	Do not wri outside th box
Use Table 3. [4 marks]	
Advantages of addition polymers	
Disadvantages of addition polymers	
Calculate the volume of wood in a wooden surfboard of mass 5.25 kg	
Density in kg/m ³ = $\frac{10000 \text{ m/kg}}{\text{Volume in m}^3}$ [3 marks]	
Volume = m ³	
	14
Turn over ►	
	than wood to make surfboards. Use Table 3. [4 marks] Advantages of addition polymers Disadvantages of addition polymers Disadvantages of addition polymers Calculate the volume of wood in a wooden surfboard of mass 5.25 kg Use Table 3 and the equation: Density in kg/m ³ = Mass in kg [3 marks]

		Do not write
06	This question is about the corrosion of metals.	Do not write outside the box
	The corrosion of iron is called rusting.	
06.1	Plan an investigation to show that both water and air are needed for iron to rust.	
	You should include the results you expect to obtain.	
	Use apparatus and materials from the list:	
	 test tubes stoppers iron nails tap water boiled water drying agent oil. 	
	• on: [6 marks]	

A student investigated how the mass of three iron nails, $\boldsymbol{A},\,\boldsymbol{B}$ and $\boldsymbol{C},$ increased after rusting.

Table 4 shows the student's results.

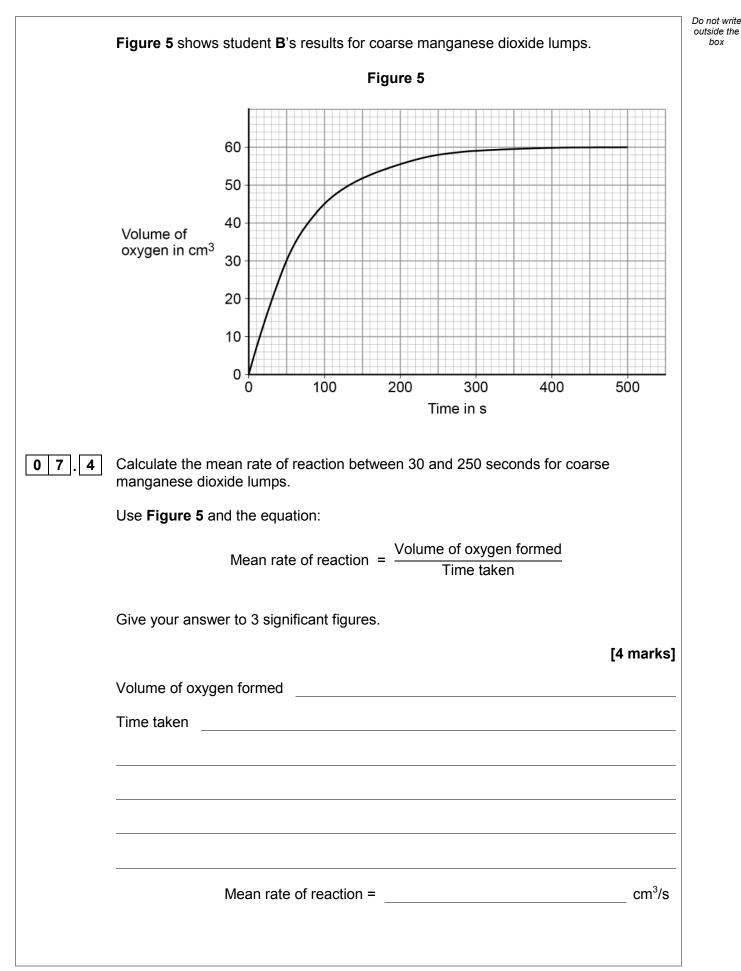
		Table 4	
Nail	Mass of nail before rusting in g	Mass of nail after rusting in g	Increase in mass of nail in g
Α	1.22	1.30	0.08
в	1.25	1.36	x
с	1.24	1.33	0.09
	te X in Table 4.		[1 mark
		х	(= g
Calcula	te the mean increase in ma	ass of the three iron nails,	A , B and C .
Use Ta l	ble 4 and your answer to C	Question 06.2	[1 mark
		Mean increase in mass	S = (

Turn over ►

8

Do not write outside the

box


21

The equation for the reaction is: hydrogen peroxide → water + oxygen 0 7.1 Complete the sentence. Choose an answer from the box. a burning splint a glowing splint damp litmus paper limewater The students tested the gas produced to show that it was oxygen. The students used	oxide.
0 7.1 Complete the sentence. Choose an answer from the box. a burning splint a glowing splint damp litmus paper limewater The students tested the gas produced to show that it was oxygen. The students used	
Choose an answer from the box. a burning splint a glowing splint damp litmus paper limewater The students tested the gas produced to show that it was oxygen. The students used	
Choose an answer from the box. a burning splint a glowing splint damp litmus paper limewater The students tested the gas produced to show that it was oxygen. The students used	
a burning splint a glowing splint damp litmus paper limewater The students tested the gas produced to show that it was oxygen. The students used	
damp litmus paper limewater The students tested the gas produced to show that it was oxygen. The students used Student A investigated the effect of the particle size of a manganese d on the rate of the reaction.	[1 mark]
The students tested the gas produced to show that it was oxygen. The students used	
The students used	
Student A investigated the effect of the particle size of a manganese d on the rate of the reaction.	
on the rate of the reaction.	
on the rate of the reaction.	
This is the method used.	lioxide catalyst
1. Measure 25 cm ³ hydrogen peroxide solution into a conical flask.	
2. Add some fine manganese dioxide powder to the conical flask.	
3. Measure the volume of oxygen produced every 30 seconds for 10 m	ninutes.
4. Repeat steps 1 to 3 two more times.	
5. Repeat steps 1 to 4 with coarse manganese dioxide lumps.	

0 7.2	The method student A used did not give repeatable results.		Do not write outside the box
	How could student A make the results repeatable?	[1 mork]	
	Tick (✓) one box.	[1 mark]	
	Student A should make measurements every 2 minutes.		
	Student A should measure the mass of manganese dioxide.		
	Student A should use 50 cm ³ hydrogen peroxide.		
	Student A should use a beaker instead of a conical flask.		
	Student P used a method which gave repeatable results		
	Student B used a method which gave repeatable results.		
0 7 . 3	How could student B improve the accuracy of these results?	[1 mark]	
	Tick (✓) one box.		
	Calculate a mean but do not include any anomalous results.		
	Calculate a mean but do not include the first set of results.		
	Record the results in a table and plot the results on a bar chart.		
	Record the results in a table and plot the results on a line graph.		

0 7 . 5 Fine manganese dioxide powder produces a higher rate of reaction than coarse	itside the box
manganese dioxide lumps.	
Sketch on Figure 5 the results you would expect for student B 's experiment with fine manganese dioxide powder.	
[2 marks]	
0 7 . 6 Hydrogen peroxide molecules collide with manganese dioxide particles during the reaction.	
Why does fine manganese dioxide powder produce a higher rate of reaction than coarse manganese dioxide lumps?	
[1 mark] Tick (✓) one box.	
Fine manganese dioxide powder has a larger surface area.	
Fine manganese dioxide powder has larger particles.	
Fine manganese dioxide powder produces less frequent collisions.	
Turn over for the next question	10
Turn over ►	

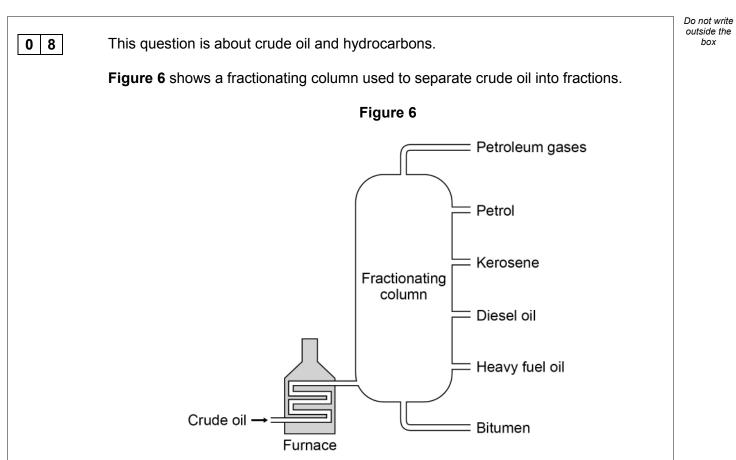


 Table 5 gives information about some of the fractions.

Table 5

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40–110
Kerosene	180–260
Diesel oil	260–320
Heavy fuel oil	320–400
Bitumen	400–450

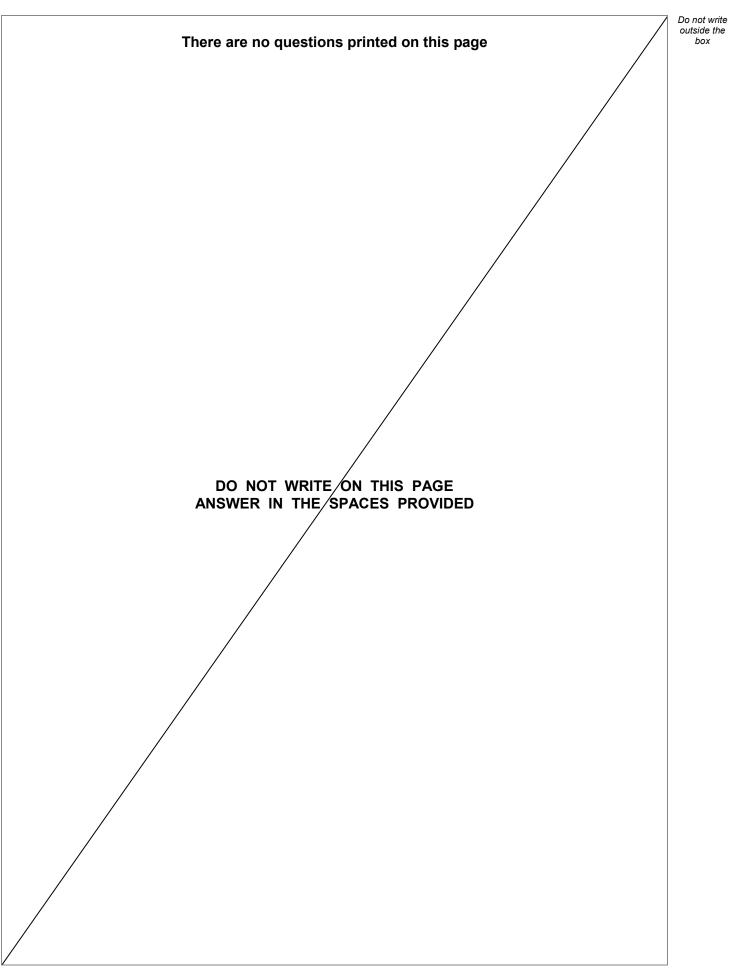
0 8.1	Suggest a suitable temperature for the furnace in Figure 6. [1 mark]	Do not wr outside tl box
0 8.2	C Explain why diesel oil collects above heavy fuel oil but below kerosene in the fractionating column.	
	[2 marks]	
0 8.3	Suggest two reasons why bitumen is not used as a fuel. [2 marks] 1	
	2	
	Question 8 continues on the next page	

08.4	Petrol contains mainly alkanes.
	Which of the following compounds is an alkane?
	[1 mark] Tick (✓) one box.
	C ₂ H ₄
	C ₄ H ₈
	C ₆ H ₁₄
	C ₈ H ₁₆
	Large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules.
08.5	Describe the conditions needed to crack hydrocarbon molecules from the diesel oil fraction.
	[2 marks]

Do not write outside the box

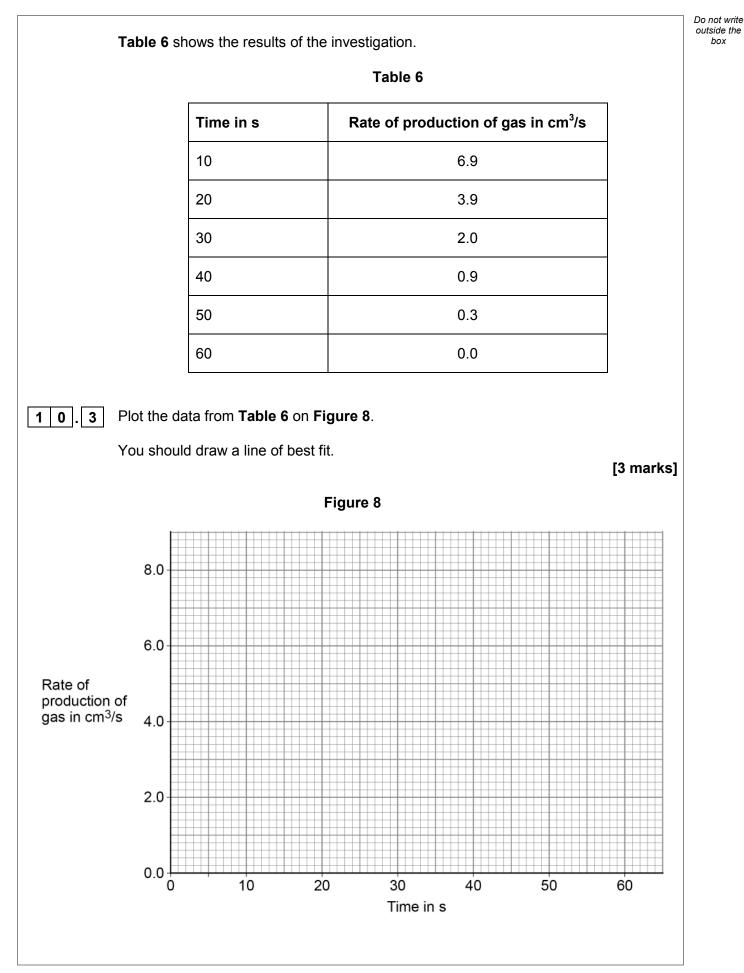
08.6	Explain why large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules. [2 marks]	Do not write outside the box
		-
0 8.7	Complete the equation for the cracking of $C_{15}H_{32}$ [1 mark] $C_{15}H_{32} \ \rightarrow \ C_{12}H_{26} \ \ \ + \ _$	
	Turn over for the next question	11
2 9	Turn over ▶	 ►
2 9	IB/G/Jun19/8462/2	2F

09	This question is about lithium carbonate.	Do not write outside the box
	Lithium carbonate is used in medicines.	
	Figure 7 shows a tablet containing lithium carbonate.	
	Figure 7	
09.1	Lithium carbonate contains lithium ions and carbonate ions.	
	A student tested the tablet for lithium ions and for carbonate ions.	
	The student used:	
	 a metal wire dilute hydrochloric acid limewater. 	
	Plan an investigation to show the presence of lithium ions and of carbonate ions in the tablet.	
	You should include the results of the tests for the ions. [6 marks]	

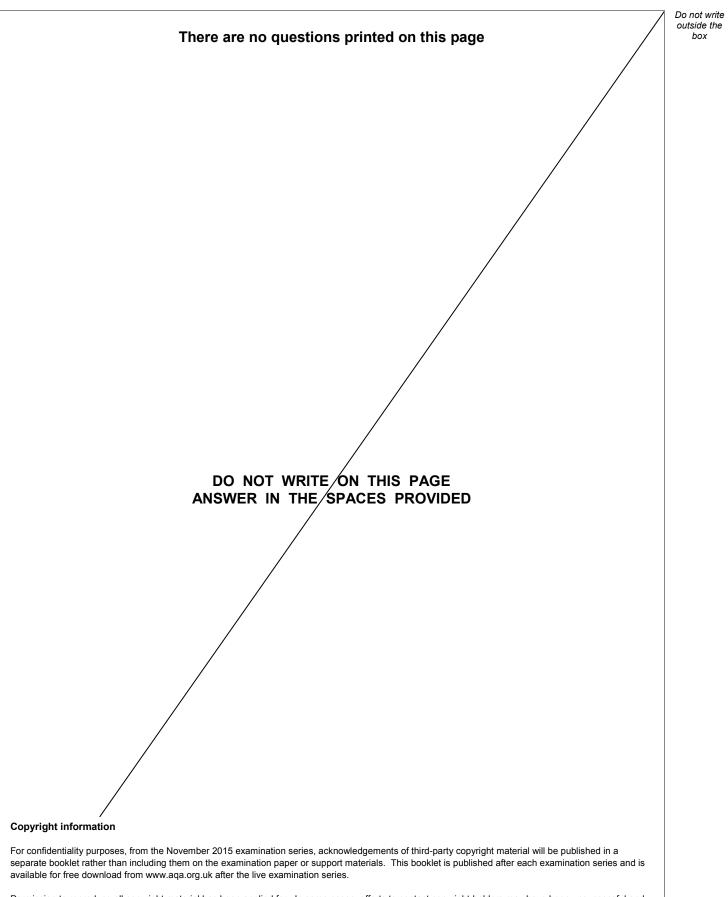

Do not write outside the box

09.2	The tablet also contains other substances.	
	The substances in tablets are present in fixed amounts.	
	The substances in tablets are present in fixed amounts.	
	What name is given to mixtures like tablets?	
		[1 mark]
09.3	The tablet has a mass of 1.20 g and contains 700 mg of lithium carbonate.	
	Calculate the percentage by mass of lithium carbonate in this tablet.	[3 marks]
		[5 marks]
	Percentage by mass of lithium carbonate =	%

Turn over ►


10

1 0	This question is about rate of reaction.	Do not write outside the box
	A student investigated the rate of the reaction between magnesium and dilute hydrochloric acid.	
	The equation for the reaction is:	
	$Mg(s) + 2 HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$	
10.1	Which state symbol in the equation for the reaction does not represent one of the three states of matter?	
	[1 mark]	
	The student determined the rate of production of hydrogen gas.	
10.2	What two pieces of measuring apparatus could the student use to find the rate of	
	production of hydrogen gas? [2 marks]	
	1	
	2	
	Question 10 continues on the next page	



10.4	Give three conclusions that can be drawn about the rate of reaction between magnesium and dilute hydrochloric acid in this investigation.		
	Use data from Figure 8 and Table 6.	[3 marks]	
	1		
	2		
	3		
10.5	The student repeated the investigation using dilute hydrochloric acid at a higher temperature.		
	All the other variables were kept the same.		
	Which two statements are correct?	[2 marke]	
	Tick (✓) two boxes.	[2 marks]	
	More bubbles were produced in the first 10 seconds.		
	The activation energy for the reaction was higher.		
	The magnesium was used up more quickly.		
	The reaction finished at the same time.		
	The total volume of gas collected was greater.		<u> </u>
	END OF QUESTIONS		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

